
 

The sentence 

 

Irving was closer to me than he was to most of the others contains a
quantifier, most of the others, in the scope a comparative. The first part of this paper
explains the challenges presented by such cases to existing approaches to the seman-
tics of the comparative. The second part presents a new analysis of comparatives based
on intervals rather than points on a scale. This innovation is analogized to the move
from moments to intervals in tense semantics. The remainder of the paper is concerned
with an interval-based semantics of degree in relation to issues other than the com-
parative proper. The paper begins with a discussion of the role negative polarity has
played in studies on the semantics of comparatives.

1 .   I N T R O D U C T I O N

Scalar predicates are used to order individuals in their domain. To say
that Fido is more noisy than Fida is to order him above her with respect
to noisiness. Tall presupposes a height ordering, cold a temperature ordering,
and so on. Generalizing on this ordering of individuals we arrive at the
notion of a scale with a set of points representing the possible positions
in the ordering that an individual might occupy. In many cases we invent
names for these points: decibels, inches, degrees centigrade, dollar amounts,
and so on. These points are the basis for comparison according to degree
analyses of the comparative (Cresswell 1976; Hellan 1981; von Stechow
1984; Rullmann 1995). A simple version of this view says that if the dress
is more expensive than the shirt, then there is a point on the expense scale
corresponding to the dress, and it is above the point corresponding to the
shirt. Similarly, if the point on the height scale corresponding to Frank is
above the one for Meryl, then Frank is taller than Meryl. While this seems
to be an intuitively satisfying story, the central claim of this paper is that:

(1) Scalar predicates have a semantics based on intervals, not points.
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The chief evidence for the claim in (1) will come from comparatives that
contain quantifiers. The challenge these constructions present for degree
analyses is easy to see. It may very well be that Frank is taller than everyone
else is without there being a point on the scale corresponding to everyone
else. Similarly, if the shirts range in price from $20 to $100 and the dress
is $150 then the dress is more expensive than the shirts are, yet there is
no point that corresponds to the shirts. Clearly, in these cases there is an
interval of the height scale corresponding to everyone but Frank which
lies below Frank’s height, and there is an interval of the price scale
corresponding to the shirts which lies below the price of the dress.

A shift similar to the one proposed here for the semantics of scalar
predicates occurred in our understanding of temporal expressions.
Expressions like before and after as well as the tenses are used to order
events. Generalizing on the ordering, we arrive at a time line with points
on it and we have invented names for these points as well. Initially, tense
logics were based on these points, called moments of time. It was later
discovered that intervals of time and not moments would have to serve as
the basis for a tense semantics for natural language (Bennett 1977; Bennett
and Partee 1972; see also Cresswell 1985 for extensive discussion).

Comparison with temporal interval semantics will crop up at various
points in our discussion. One parallel will be of particular importance. In
executing a moment-based tense logic it is usually assumed that specific
events are related to unique moments of time. When one moves to an
interval semantics, uniqueness does not come automatically. If an event
occurred during an interval it occurred during all superintervals. We will
discover that the same applies in the move from points to intervals in the
scalar domain.

Sections 2–4 below expose the inadequacies of degree-based analyses
of the comparative. (Here and elsewhere we adopt the standard practice
of using “degree” to mean ‘point on a scale’, contrary to our use of that
term in the title. Hopefully no confusion will ensue.) While negative polarity
items are a side issue here, they help to place the central issues in a broader
setting, and so in section 2 we use their presence in comparatives as a
starting point. Section 3 shows that the problem lies with the degrees and
not with how the degree analyses are executed. Since the difficulties appear
to arise only when quantifiers are present, section 4 dispenses with the
possibility of solving these problems using existing mechanisms for
establishing the scope of quantifiers. In sections 5–7 an interval seman-
tics for the comparative is developed. Section 5 shows why we can’t simply
replace “point” with “interval” in existing frameworks. Section 6 fixes some
general properties of scalar predicates as relations between individuals
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and intervals. Finally, the analysis of comparatives is worked out in detail
in section 7. In sections 8–12 we explore various consequences of adopting
a degree semantics based on intervals.

2 .   N E G AT I V E P O L A R I T Y A N D T H E C O M PA R AT I V E

In “Negative Polarity and the Comparative,” Hoeksema (1983) argues for
a particular analysis of clausal comparatives on the basis of the ability of
that analysis to explain the presence of negative polarity items (NPIs) in
than-clauses like those in (2) below:

(2) a. This text is more difficult than any of the others were.
b. It is hotter in New Brunswick today than it ever was in L.A.
c. We ate more today than we’ve eaten in weeks.

Given the theory of Ladusaw (1979, 1980) and Fauconnier (1975, 1978),
if the comparative were downward entailing with respect to the clausal
argument of than, an NPI would be expected possible in these clauses. What
Hoeksema shows is that downward entailingness indeed follows from the
semantics of the comparative that he endorses. Similar arguments have since
been made about other analyses of the comparative.1

To say that that the comparative is downward entailing with respect to
the clausal argument of than is to say that the clause under than is a
context in which implications are reversed. Evidence for implication reversal
under the comparative often comes in the form of examples like those below
from von Stechow (1984):

(3) a. Otto is fat.
b. Otto or Max is fat.

(4) a. Ede is fatter than Otto is.
b. Ede is fatter than Otto or Max is.

Whereas (3a) entails (3b), when they are embedded under the compara-
tive, the entailment is “reversed”. There is a reading of (4b) on which it
entails (4a). But how reliable is this evidence? The entailment from (4b)
to (4a) surely must be related to the general phenomenon observed with
or whereby in various contexts or appears to have the meaning of and. Given
that this phenomenon occurs outside comparative than-clauses (Ehrenkranz
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1973)2 one might suspect that the or in (3) is not truth-conditionally equiv-
alent to the one in (4). This is essentially the view of Lakoff (1971), but
it runs counter to what is assumed in accounts of the comparative, many
of which we will discuss in detail below. Cresswell (1976, fn. 10), Hoeksema
(1983), von Stechow (1984), and others explicitly show how their seman-
tics for the comparative combines with a disjunctive or to yield the
entailment from (4b) to (4a). Interestingly, the same holds for the superfi-
cially different account of comparatives found in Klein (1982). In each of
these cases, the entailment goes through because (4) is essentially read as
meaning that Ede is fatter than the fatter of Otto and Max. A problem
with this view is that it makes similar predictions for examples containing
measure phrases. Sentence (5), for example, is read on these accounts as
(6):

(5) It is 14° hotter here than it is in Madrid or Mexico City.

(6) It is 14° hotter here than it is in the hotter of Madrid and Mexico
City.

But if (6) were an accurate paraphrase of (5), the following reasoning would
be valid:3

(7)     #If it is 44° here, 30° in Madrid, and 10° in Mexico City, then
it is 14° hotter here than it is in Madrid or Mexico City.

Compare this to (8):

(8) If Ede is 6 ft, Otto is 5 ft, and Max is 4 ft, then Ede is taller
than Otto or Max is.

The difference between (7) and (8) suggests that the or in these examples
may in fact be a negative polarity item (cf. Larson 1988) which has a
conjunctive interpretation in this context, in the way that negative polarity
any or ever seem to have universal interpretations in the comparative.4 If
this view is correct, then (3b) is semantically distinct from the embedded
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ever saw a bulldog, which paraphrases as if you saw a bulldog at least
once in the past, versus hotter than it ever was in New Mexico, which roughly paraphrases
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clause in (4b), which means that (3)–(4) cannot bear witness to the
downward entailingness of comparatives.

The foregoing discussion shows that or data may not provide the strongest
evidence for downward entailingness. However, since the claim that
comparatives are downward entailing with respect to the clausal argument
of than is a general one, we can simply leave or aside and test the claim
using other expressions. For example, if the comparative were in fact
downward entailing, then given the entailment patterns in (9), we would
expect the entailments in (10) to go through:

(9) a. Exactly 7 of my relatives are rich. 

 

→ At least 4 of my
relatives are rich.

b. Given that there are elephants in this room: Almost every
elephant in this room is heavy. → Some elephant in this room
is heavy.

c. Most of the high tech stocks were overvalued. → At least 2%
of the high tech stocks were overvalued.

(10) a.# John is richer than at least 4 of my relatives were.
→ John is richer than exactly 7 of my relatives were.

b.#My car is heavier than some elephant in this room is.
→ My car is heavier than almost every elephant in this room
is. 

c.# Nissan is currently more overvalued than at least 2% of the
high tech stocks were.
→ Nissan is currently more overvalued than most of the high
tech stocks were.

In fact, as indicated, these entailments are not intuitively valid. By com-
parison, observe that the entailment patterns in (9) are reversed when those
clauses are embedded in bona fide downward entailing contexts:

(11) a. It isn’t true that at least 4 of your relatives are rich.
→ It isn’t true that exactly 7 of your relatives are rich.

b. It is impossible that some elephant in this room is drunk.
→ It is impossible that almost every elephant in this room is
drunk.

c. He never admitted that at least 2% of the tech stocks were
overvalued.
→ He never admitted that most of the tech stocks were
overvalued.
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Since the entailments in (10) do not go through we are entitled to conclude
that the comparative is not downward entailing. This leads to wholesale
rejection of existing analyses touted for their ability to explain downward
entailingness.

This conclusion, it should be noted, does not depend on adopting the
Ladusaw-Fauconnier theory of negative polarity for explaining the data in
(2). It merely seizes on the claim that the comparative is downward entailing
in the relevant sense. It should also be noted that the argument was pre-
sented in a form that was simplified relative to the way the analysis of
comparatives works in most cases. The entailment relation in (9) relates
propositional type expressions, yet clauses under than contributes sets of
degrees to the meaning of the comparative (or sets of degree modifier
meanings in the case of Klein 1982). For example, the embedded clauses
of (10a) contribute sets like those in (12):

(12) a. {d: at least 4 of my relatives are d-rich}
b. {d: exactly 7 of my relatives are d-rich}

But this doesn’t really change things. For any degree d, if exactly 7 of
my relatives are d-rich, then at least 4 of my relatives are d-rich. (12b) is
therefore a subset of (12a), and so the clause under than in John is richer
than exactly 7 of my relatives were entails, in a generalized sense, the clause
under than in John is richer than at least 4 of my relatives were. It is in
this generalized sense that Hoeksema (1983) and others intend their claim
of downward entailingness. Reading the arrow in (9) in this generalized
sense, the argument we’ve made here still goes through. The comparative
is not in fact downward entailing as claimed.

Attention to the type of the argument of than provides us with the
opportunity to address another kind of evidence adduced for the downward
entailingness of comparative than-clauses. Linebarger (1987, p. 378) illus-
trates the downward entailingness of the comparative operator with
examples of the following sort:

(13) a. John eats raisin bread. → John eats bread.
b. The sun rises more often than John eats bread. → The sun rises

more often than John eats raisin bread.

The sun rises more often than John eats bread compares how often the
sun rises to how often John eats bread. The arguments of the two than’s
in (13b) are therefore along the lines of the sets in (14) below:

(14) a. {d: John eats bread d-often}
b. {d: John eats raisin bread d-often}
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This means that the entailment in (13a) is irrelevant. What is relevant
is the relation between the sets in (14). Those sets presumably consist of
frequencies, as the anaphoric that in the following suggests:

(15) John eats raisin bread twice a month. Would you wanna eat raisin
bread that often?

In order to show a downward entailing pattern, then, we need to show
that any frequency that is a member of the set in (14b) is a member of
the set in (14a) – in other words, that (14b) is a subset of (14a). If that
were the case, then one could say that in a generalized sense, (14b) entails
(14a) and it is that entailment which is reversed in (13b). The crucial
question then is whether (14b) really is a subset of (14a). If it were, it would
be reasonable to draw the following inference:

(16) If John eats raisin bread twice a month, then John eats bread
twice a month.

It is unclear to us whether this inference is valid or not. If this inference
does not follow directly from the meanings of the subclauses, then we
may argue that (14b) is not a subset of (14a). In that case, (13) represents
another species of argument for downward entailingness that falls by the
wayside.

Returning to the examples in (10), we can make an even stronger point.
Reversing the direction of the arrows in (10) leads to entailments that are
intuitively correct. This means that the clause embedded under compara-
tive than is in fact in an upward entailing context! No existing theory of
the comparative explains these entailments.

A possible way to avoid this conclusion and to save existing analyses
of the comparative is to suppose that the quantifier phrases embedded under
than are not actually interpreted in the scope of the comparative. This would
mean that the argument in (9)–(10) does not go though, because the quan-
tified clauses in (9) are not the true arguments of the comparatives in (10).
In the literature, there are at least two proposals for how this might happen.
Von Stechow (1984) suggested that quantifiers could be scoped outside
by the usual mechanisms of quantifying in. Below we examine and reject
this possibility.5 Larson (1988), attempting to solve a similar challenge to
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another theory of comparatives (Klein 1980), proposed a compositional
semantics whereby the clause under than actually lies outside the semantic
scope of the comparative. Here again, the negative polarity facts in (2)
are relevant. As Ladusaw (1979) showed, negative polarity items must lie
in the semantic scope of their licensers; it is not enough for them to be
c-commanded by a licenser at some level. Perhaps the most striking evidence
for this comes from connectedness effects in pseudoclefts (Higgins 1979;
Heycock and Kroch 1999). This is illustrated with any in (17) below, taken
from Hoeksema (2000), where the question of semantic versus syntactic
scope for NPI licencing is addressed in detail. 

(17) What was missing was any real interest in the murk and
challenge of the real world.

Since NPIs are licenced to occur in comparative than-clauses, and since
their occurrence requires a scopally higher licencer, it would seem to follow
that than-clauses in fact do lie in the semantic scope of the comparative.
If, as we will argue below, quantifiers cannot scope outside of than-clauses,
we are back to our original conclusion. Existing theories of the compara-
tive make incorrect predictions concerning entailment patterns like those
in (10) involving quantifiers in the scope of a comparative. In the fol-
lowing section, we will turn to the details of these theories to see what
goes wrong.

In this section we have used NPIs to raise the issue of down-/upward
entailingness and to argue that than-clauses must be in the scope of more,
as the surface order suggests. Our discussion leaves a strong suggestion that
an explanation for the data in (2) will not come in the form of a simple
extension of Ladusaw’s theory. Unfortunately, we have nothing further to
add on this issue. (See Zepter 2001 for an alternative account of NPIs which
specifically addresses quantifier data like those in (10).)

3 .   Q U A N T I F I E R S I N T H E S C O P E O F C L A U S A L C O M PA R AT I V E S

Among analyses of the comparative, there are those that make reference
to degrees in the object language and those that eschew reference (see Klein
(1991) for this and other issues relating to the use of degrees). The bulk
of the discussion will focus on degree analyses. As noted above, Larson
(1988) has already shown that avoiding degree reference does not grant
immunity from the kinds of problems we will be interested in here.

A typical degree analysis begins by taking the clause under than to denote
a set of degrees, as in (18) below. The material inside the parentheses in
(18a) undergoes elision. The trace is a variable over degrees, which is bound
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by a lambda operator. The embedded clause denotes the set of degrees in
(18c).

(18) a. John is taller than [CP Mary is (t tall)].
b. [CP Mary is (t tall)] 

 

� λd[Mary is d tall]
c. {d: d is Mary’s height} = {dM}

For now we are assuming that if d in Mary is d-tall is assigned height
h, the result is true just in case Mary is exactly h tall. This means that
the set in (18c) is a singleton. The next step is to say how this set is related
to John’s height. Theories differ here; in (19) the options are listed:

(19) [John is taller than CP] iff: John’s height is greater than:

a. some height in CP (Hellan 1981)
b. the height in CP (Russell 1905)
c. the maximal height CP (von Stechow 1984)
d. every height in CP (Cresswell 1976; Klein 1982)

These theories collapse when applied to a case like (18) where the embedded
clause denotes a singleton set. Predictions diverge when quantifiers occur
in the embedded clause. In order to illustrate these predictions we will make
reference to the scale in (20) below. It represents data on a number of sus-
pects ranging in height from 5′3″ (Tom, Uwe, and Victor) to 5′8″ (Hubert).

(20)
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The statement below, made in reference to (20), is intuitively false:

(21) Q is taller than everybody else is (t tall). (false of (20))

What do our theories say? To answer this question we calculate the meanings
contributed by the clauses under than:

(22) a. λd[everyone else is d tall]
b. {d: everyone but Q is d tall}
c. ∅

Since the suspects are not all the same height, this set is empty. According
to the definite analyses in (19b,c), we should find (21) uninterpretable due
to presupposition failure. According to the universal theory (19d), (21)
should be true, vacuously. The existential analysis in (19a) correctly predicts
the sentence to be false but for the wrong reason. It would predict any
sentence of the form X is taller than everyone else false, including the
true sentence H is taller than everyone else is.

As noted above, we are taking ‘is d-tall’ to mean ‘is exactly d-tall’. If
instead we take it to mean ‘is at least d-tall’ we get the following meaning
for the clause under than: 

(23) a. λd[everyone else is d-tall]
b. {d: H, J. K, L, M, N, R, S, T, U, and V are all at least d-tall}
c. {d: d ≤ 5′3″}

Since Q’s height is greater than 5′3″, all the theories in (19) predict that (21)
should be true or truth-valueless when in fact it is false.

In deciding whether Q is taller than everybody else is, we don’t look
for a point corresponding to everyone else, but rather we scan the scale
to check everyone’s height. This simple observation is missed by degree
analyses. Points on the scale corresponding to individuals are “too small”
to carry information about several individuals at once. This leaves us with
two options. We either retain a degree analysis appealing to some mecha-
nism for removing the offending quantifiers or we revise the analysis of
comparatives so that degrees do not play a central role. We will take up
these two options in turn.

Difficulties inherent in the degree analyses were illustrated using an
example with a universal quantifier. However, this is by no means neces-
sary. According to all of the analyses above the sentences below are both
true: 

(24) H is taller than exactly 5 of the others are.

(25) H is taller than only one of the others is.
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And for each of the theories there are further mistaken predictions gener-
ated by considering quantifiers of various types.

4 .   W H Y Q U A N T I F I E R R A I S I N G W O N ’T W O R K

Crucial to the argument in the previous section was the assumption that
quantifiers occurring inside a than-clause have in-situ scope. There are some
very good reasons for making this assumption. As observed in section 2,
we must assume that quantifiers are at least generated in the scope of the
comparative, since the than-clauses containing them are. This leaves the
possibility that quantifiers are moved or ‘scoped’ away from this position.
As Larson (1988) observed, an argument against such a move stems from
the well-known parallels between constraints on quantifying in and those
imposed on wh-movement. Wh-words may not be moved from inside a
clause under than either overtly as in (26a) or covertly as in (26b):

(26) a.* [Which bird]i are you taller than ti was?
b.*She asked who was richer than who else was.

If quantifier scope opportunities are constrained in roughly the same way
that wh-movement is, then it should be impossible to grant the quantifiers
in question scope outside a than. An additional violation would arise on a
QR account with examples like (27) below:

(27) a. Alice is richer than George was and than most of his children
will ever be.

b. [most of his children]i [Alice is richer than George was and
than ti will ever be. 

In order to save the degree analysis here the quantifier most of his children
would have to be removed from inside a conjoined clause.

Furthermore, in the normal case when quantifiers can have scope outside
their surface structure position, the wide scope reading exists in addition
to the narrow scope surface reading. But, again as Larson (1988) observed,
existing analyses of comparatives would have to assume an obligatory
rule of QR. This point has been obscured in the past because researchers
have tended to look at examples with simple universal or existential
quantifiers. In these cases the potential ambiguity would arguably be hard
to detect because the two readings are often related by entailment.
Furthermore, in theories where definiteness plays a role, presupposition
failure has been used to explain away the lack of ambiguity (Rullmann
1995). Wilkinson (1998) showed, however, that if non-monotonic quanti-
fiers are used the two readings are logically independent and both can
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arise in the same context. If von Stechow’s theory in (19c) were correct,
for example, and if a rule of QR could scope quantifiers outside the com-
parative, the sentence in (28a) would be ambiguous between the paraphrases
in (28b) and (28c): 

(28) a. Hubert is taller than exactly 5 of the others are.

b. Find the largest height h, where exactly 5 individuals other than
Hubert are h tall. Hubert is taller than that. (narrow scope)

c. There are exactly 5 individuals that are shorter than Hubert.
(wide scope)

Neither reading is ruled out by presupposition when uttered with respect
to (20) since there is indeed a unique height, 5′7″, that exactly 5 individ-
uals have. (28b) is clearly true and (28c) is clearly false. Yet (28a) is
intuitively univocal and false. In other words, only the wide scope reading
is available, showing that if QR accounts for the wide scope it must be
an obligatory rule in this case.

Another property of QR is that it is prohibited from applying to quan-
tifiers like those in (29) below. To save degree analyses, however, this
prohibition would have to be relaxed.

(29) a. Lucy paid more for her suit than they both paid in taxes last year.
b. It is colder in Stony Brook today than it usually is in New

Brunswick

Paralleling the discussion in the previous section, we observe that (29a)
could be true even if there is no single amount that they both paid. Similarly,
(29b) could be true even in the likely case that there is no single temper-
ature (degree of coldness) that characterizes New Brunswick most of the
time.

Finally, even if a QR solution could be maintained, it makes the wrong
predictions in some cases where another scope-taking element lies between
the quantifier and the comparative over which it will take scope. Imagine
John predicts that most of his students will get between 80 and 90 points
on the national exam. When the exam is over, Bill receives a score of 96
and Alex receives a score of 70. In that case, it would be fair to say that:

(30) Bill did better than John predicted most of his students would
do.

But it would not be true to say that:

(31) Alex did better than John predicted most of his students would
do.
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After QR applies to the embedded quantifier in (30) we arrive at the
paraphrase below:

(32) Most of John’s students are x such that: Bill did better than
John predicted x would do.

This has the welcome result that the clause under than can safely pick out
degrees associated with individual students. The problem is that it doesn’t
accurately capture the meaning of (30). Since John did not make any pre-
diction about a particular student or about a particular degree, for any
value of x, the set denoted by (33) is empty:

(33) λd[John predicted x would do d well]

Sentence (30) is therefore incorrectly predicted to be false according to
the existential theory (19a) and truth-valueless according to the definite
theories (19b, c). (30) comes out true on the universal theory (19d), but then
(31) would come out true for the same reasons.

Hopefully the evidence amassed in this section will deter anyone from
supposing that quantifiers under than are routinely scoped outside the
comparative. This spells doom for the analyses surveyed in section 3.
Salvation will come in the following sections as our horizons broaden to
encompass larger expanses of the scales on which degrees are marked.

5 .   TO WA R D S A S O L U T I O N :  I N T E RVA L S I N T H E S E M A N T I C S O F

C O M PA R AT I V E S

An analysis of comparatives using intervals might begin with the fol-
lowing observation.6 Hubert is taller than everyone else is would be true
if there was an interval of a tallness scale containing the heights of everyone
but Hubert, and above that there was an interval containing Hubert’s
height – something like in the figure below:
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(34)

We intend to preserve this view of the comparative as a relation between
intervals of the scale; however, the exact nature of the relationship will need
sharpening. The examples below give an indication of what will be needed:

(35) H is taller than exactly 5 of the others were.

(36) H is 1 inch taller than everyone else is.

Sentence (35) is intuitively false according to the information in (34).
However, there is an interval which contains the heights of exactly 5 of
the others, namely those of J, K, L, M, and N, and which lies below an
interval covering H’s height. (36) is likewise intuitively false according
to the scale in (34). But the upper interval depicted in (34) is in fact 1
inch above the lower one, the one that covers everyone but H’s height. If
this view is to work, we need somehow to restrict the choice of intervals
that participate in the comparative relation.

In order to address this issue, we should say a bit more about relations
between individuals and intervals of the scale and between one interval
and another.

6 .   I N T E RVA L S A N D D I F F E R E N T I A L S

The underlined phrases in the examples below are what von Stechow (1984)
called differentials:

(37) John is 1 inch taller than Mary was.

(38) Felix is a fair amount richer now than he was last year.
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(39) Harry is a lot more fascinating than his father was.

(40) It’s a little bit more tasty than it was when we first made it.

(41) She’s no slower than she usually is.

(42) Bill Clinton wasn’t any happier than Bill Gates was.

(43) Maxine wasn’t that much faster than I thought she would be.

Differentials measure parts of the scale. According to (37), there has
to be a 1-inch portion that lies between an interval or point on the scale
associated with John and one associated with Mary. According to (39), there
has to be a large portion on the fascination scale between Harry and his
father. Given that these differentials are predicates applying to parts of
the scale, it is interesting to notice that they are all symmetric quantifiers
that apply in the mass domain. Their standard uses are illustrated below:

(44) He has 1 inch of rope in his pocket.

(45) Felix put a fair amount of gasoline in the tank.

(46) Harry drank a lot of milk.

(47) There was a little bit of evidence to support her alibi.

(48) She has no interest in your proposal.

(49) I don’t have any rice.

(50) He didn’t drink that much wine.

In general, count quantifiers don’t perform well as differentials in adjectival
comparatives. *John is every/many taller than his mother was is ill-formed.
And while the negative polarity any is potentially a symmetric mass quan-
tifier ((49)) and therefore can be used as a differential ((42)), free choice
any is not a mass quantifier:

(51)   # Choose any rice. (≠ choose any amount of rice)

Free choice any is also not symmetric and cannot be used as a differen-
tial:

(52)   * With enough alcohol, you can feel any richer than Bill Gates
feels.

Expressions such as inches and degrees are classifiers, which combine
with count quantifiers to form mass quantifiers. They therefore enable the
use of count quantifiers in differentials:
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(53) He bought several *(inches) of rope.

(54) He is several *(inches) taller than he used to be.

(55) It is a few *(degrees) colder now than it was an hour ago.

The key property of the mass domain is its homogeneity. If something
is rope, then any relevant subpart is rope. A scale is similarly a mass-like
object. Any interval of the scale has parts which are also intervals of the
scale. The part-of relation (part-of: 

 

�, proper part-of: ) defined on inter-
vals of the scale exists in addition to the ordering relation (less-than: ≺,
less-than or equal to: �) necessary for scalehood. Both of these relations
are partial, for if two intervals partially overlap, then neither one is part
of the other nor is one less than the other. These relations exclude one
another in the sense that if A is less than B, then A isn’t part of B, and if
A is part of B, then A cannot be less than B.

Since differentials measure gaps between intervals we need to define a
‘subtraction’ operation. Assuming I is above K, we want [I – K] to pick
out that part of the scale that is below I and above K: 

(56) For intervals I, K:

If K ≺ I, then: ∀J: (J ≺ I & K ≺ J) ↔ J � [I – K]
Otherwise [I – K] = 0

I – K names the interval that lies in between I and K, below I and above
K. Differentials are understood as predicates that apply to the gaps named
with the subtraction operation. One differential that deserves special mention
is SOME.7 It says that an interval is equal to or greater than some con-
textually specified minimum: 

(57) SOME(J) = 1 iff the size of J equals or exceeds δ, where
δ is determined by context.

SOME is used to interpret comparatives that do not have an overt differ-
ential. If it is true that this board is longer than that board is then there
must be some difference in the lengths of the boards. The context-depen-
dent component of (57) reflects the fact that two boards which are close
in length will count as equally long in some contexts, but not in other

�
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contexts where the level of precision is greater. The semantics of SOME
is modeled on the mass quantifier some, which is similarly context depen-
dent, as the following pair illustrates:

(58) There is some wood in my eye.

(59) There is some wood in my truck.

In order to illustrate the notions introduced so far, we define another dif-
ferential:

(60) NO(J) = 1 iff the size of J is less than or equal to δ,
where δ is determined by context.

Assuming that the distance between A and C in (61) below is greater than
δ, all the following statements are true:

SOME[A – C]) NO([A – B]) NO([B – A]) C ≺ A C B
NO([C – A]) NO([B – C]) NO([C – B]) C � C A B

(61)

In this scheme, scalar predicates such as ‘tall’ denote relations between
individuals and parts of the scale, or intervals. Whereas in the temporal
domain, one says that a time interval contains an event, we will say that
a scalar interval covers an individual. The temporal ‘contain’ relation is
persistent, meaning that if one interval contains an event, then so do all
superintervals. An event that happened in July of 1969, for example, also
happened in 1969. Likewise, we will take the relation expressed by a
scalar predicate to be persistent:

(62) Persistence Principle:
For any scalar predicate extension P, individual x, and portions
of the relevant scale I,K:

P(x,I) → ∀I′[I I′ → P(x,I′)]

�
�

�
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Among other things, this guarantees that a man who is 6 ft tall is covered
by an interval corresponding to the interval on the ruler from 4 ft to 6 ft.
It also means that there are intervals which cover both the 6 ft tall man
and his 5 ft tall friend. The temporal analogy would be a time interval
that contains two events that occurred at different times, such as a
year that contains events from different months. Taking for granted
that for any two intervals there is an interval that includes both of them
(∀I,J ∃K[I � K & J � K]), it follows from (62) that if a number of indi-
viduals are related by some scalar predicate P to various intervals on a scale,
then there will be some interval that covers all of them:

(63) Let S be a set of individuals:
(∀x[x ∈ S → ∃I P(x,I)]) → ∃K∀x[x ∈ S → P(x,K)]

This in turn guarantees that if everyone in the domain of discourse is in
the sortal domain of a predicate like ‘tall’, there will be an interval (in
fact several) that verifies quantificational statements such as ‘Everyone is
I-tall’.

Another principle that we will adopt guarantees that if Jack is exactly
5 ft tall, he cannot be exactly 4 ft tall. In interval terms, this means that Jack
cannot be covered by two distinct intervals, one lying above the other.
The Overlap Principle is stated as follows:

(64) Overlap Principle:
For any scalar predicate extension P, individual x, and portions
of the relevant scale I,K:

P(x,I) & P(x,K) → ∃J(J � K & J � I & J ≠ 0]

The following is a corollary of (64):

(65) For any individuals x,y, scalar predicate P, and intervals I,J:
[P(x,I) & P(y,J) & I ≺ J] → ~∃I′∃J′[P(x,I′) & P(y,J′) & J′ ≺ I′]

According to (65), if there is an interval covering Mary on the height scale
that is above one covering John, than there is no interval covering John
that is above one covering Mary.

7 .   I N T E RVA L S E M A N T I C S F O R C O M PA R AT I V E S

The sentence in (66) compares the temperature that it is in New Brunswick
today to the temperature that it was in L.A. last week.

(66) New Brunswick is [2 degrees] hotter today than L.A. was last
week.
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So, in addition to the bracketed phrase and the comparative morphology,
there are two temperature predicates. We can think of these as open sen-
tences, sentences with variable-denoting expressions in them:

(67) New Brunswick is t-hot today.

(68) L.A. was t-hot last week. 

We will call the clause embedded under than – in this case, L.A. was t-
hot last week – the subordinate clause. The clause in which the comparative
occurs, (67), will be called the main clause. Both of these function as
predicates of intervals whose arguments are given by the traces. We will
use the symbols Mn and Sub to stand for these predicates. We use the
symbol Diff to stand for the contribution to the meaning made by the
differential 2 degrees. Comparatives with no overt differential will be
taken to include an implicit existential to be written as SOME.8

Since it is possible that phrasal and clausal comparatives differ with
respect to quantifier scope, we have been limiting, and will continue to limit,
discussion to clausal comparatives (annoying as that might be in some
cases).

At this point, we are prepared to state a necessary condition on the
truth of the comparative: 

(69) ∃I ∃K [Mn(I) & Sub(K) & Diff([I – K])].

For the example in (66), this would mean that there is an interval on the
temperature scale I such that New Brunswick is I-hot today, there is another
interval K such that L.A. was K-hot last week, and I differs from K by 2
degrees.

Moving to a somewhat simpler case, according to (69), if John is taller
than Mary is is true, there must be an interval of the height scale covering
John that is some amount higher than one covering Mary. Below we have
indicated three intervals of the height scale: one just covering John, one just
covering Mary, and the interval labeled B covering both of them.
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(70)

According to (70), (69) is true because the John interval is a possible
value for I and the Mary interval is a possible value for K. To be sure,
there are more intervals that could be pictured here covering John, Mary,
or both. But if John is indeed taller than Mary, there are no Mary inter-
vals that lie above John intervals (see (65) above).

Condition (69) is necessary, but not sufficient. Imagine a group of
individuals of varying heights with John being the tallest. John is 6′ tall,
the next person is 5′8″, and the remainder descend in height from there.
In that case, (71) is true, but (72) isn’t (‘exactly’ reading of 2 inches).
(72) entails that everyone but John has the same height: 

(71) John is taller than everyone else is:

(72) John is 2 inches taller than everyone else is.

The condition in (69) is spelled out for (72) in (73):

(73) ∃I John is I tall & ∃K everyone else is K tall & 2-IN ([I – K])

As the figure in (74) below shows, the condition in (73) is met despite
the fact that (72) is not true. In this figure and elsewhere italicized names
indicate the position of small intervals covering the named individual:
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(74)

Intuitively, the differential 2 inches needs to measure not only the distance
between I and K but also the distances between I and intervals throughout
K. Since in (74), K has subintervals that are more than 2 inches from I,
(72) is false. The condition in (69) can therefore be strengthened requiring
K to include only subintervals that are separated from I by the amount given
by the differential: 

(75) ∃I ∃K [Mn(I) & Sub(K) & ∀K′[K′ � K → Diff(I – K′)]]

This condition can be strengthened even further. Recall the example in (76),
which was false on the ordering depicted in (77) below.

(76) H is taller than exactly 5 of the others were.

(77)
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Notice that the interval labeled I satisfies the main clause, H is I-tall, and
the interval K1 satisfies the subordinate clause since exactly 5 others are
K1-tall. Furthermore, every part of K1 is some distance away from I:

∀K′[(K′ � K1) → SOME([I – K′]).

The condition in (75) holds despite the fact that (76) is false. What intu-
itively makes (76) false is that there are other intervals, K2 for example,
all of whose parts are also some distance away from I, but K2 does not
satisfy the subordinate clause. This observation leads to the following
strengthened condition:

(78) ∃I ∃K[Mn(I)
& Sub(K)
& ∀K′[K′ � K → Diff(I – K′)]
& ∀K″[K K″ → (∃K′[K′ K″ & ~ Diff([I – K′])])]

The last conjunct requires that K be the largest interval that satisfies the
second-to-last conjunct. In the case of (76)/(77) above, the largest interval
every part of which is some distance from I begins just below I and con-
tinues down to the bottom of the scale. That interval does not satisfy the
subordinate clause, and so (76) is false.

Consider the interval K2 again. Suspect Q is K2-tall. Next, imagine
finding all the intervals that lie some distance below K2. Put them together
into an interval we call J. J begins just below K2 and extends to the bottom
of the scale. Exactly 5 individuals are J-tall. The condition in (78) is
therefore correctly met for the true sentence Q is taller than exactly 5 of
the others are. Keeping with the interval K2, consider the interval given
by [K2 – I], that part of the scale which is below K2 and above I. There
is in fact no part of the scale that fits this description; hence we get the
empty interval. The same would hold if we replaced I with any interval
above K2 or if we had K2 itself. Putting all these intervals K2 and above
together we get an interval, call it Z. Z begins with K2 and extends upwards
to the top of the scale (if there is one). The following statement is true:

(79) ∀K′[K′ � Z → NO([K2 – K′])]]
& ∀K″[Z K″ → (∃K′ [K′ K″ & ~[NO(I – K′)])]

The situation is roughly as depicted below:

� �

� �
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(80)

Since Q is K2-tall and H is Z-tall, the condition in (78) is met for the true
sentence Q is no taller than H is.

At this point existential quantification over K in (78) is misleading
since the requirements imposed on K are satisfied by only one interval.9

To make this more apparent, we define a maximality operator as follows:

(81) µK′[φ] = K iff: ∀K′[(K′ ≠ 0 & K′ � K) → φ(K′)]] 
& ∀K″[K K″ → (∃K′[K′ K″ & ~ φ(K′)])]

According to (81), µK′[φ] picks the largest interval all of whose non-
empty parts are φ. The condition in (78) can now be rewritten as:

(82) ∃I[Mn(I) & Sub(µK′[DIFF(I – K′)])

According to (82), if a comparative statement is true we should be able
to perform the following routine. First we show some interval I that satis-
fies the main clause. Then we find the largest interval all of whose parts
are below I by the amount given by the differential. We then show that
that maximal interval satisfies the subordinate clause.

It is probably wise at this point to pause to consider what’s behind (81),
appealing again to intuitions about temporal scales. We’ve used the term

� �
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“maximality” and we’ve pointed out that the µ operator picks out a unique
interval (see footnote 9). Both of these properties have at times been
attributed to the definite article, suggesting that one place where we might
find a similar effect is with definite descriptions of time intervals. Consider
the use of the definite article in the following sentence:

(83) A mysterious balloon floated on a wave around the time Calypso
had that nasty cough.

The noun phrase beginning with the time . . . appears to denote a unique
time interval, the one that coincided with Calypso’s cough. What is that
interval? Since the embedded clause is stative, there is no minimal time
interval of Calypso having the cough, hence minimality (by itself) couldn’t
give us uniqueness. On the other hand, any time interval containing the
coughing is an interval when Calypso had the cough, so there is no maximal
interval either. Instead, we choose a time interval K satisfying the following
two requirements: all parts of K are times of Calypso having that cough and
any K″, a proper superinterval of K, includes time stretches during which
Claypso doesn’t have the cough. This is just µ operating in the temporal
domain.10

In strengthening the condition in (69) we looked inside the “subordinate”
interval K; the same should be done for the main clause interval. To see
that, note that our earlier explanation for why (76) (H is taller than exactly
5 of the others are) is false in (77) would not have gone through if we
had begun with a larger interval I, as in the figure below:
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(84)

K pictured here satisfies the subordinate clause, and it is the largest interval
consisting just of intervals that are some distance below I. Again the problem
arises because while I picks out the interval K which meets the relevant
requirements, I contains subintervals, such as I′ in the figure below, which
does not meet the requirements:

(85)

In this figure, K is the largest interval composed entirely of intervals some
distance below I′. But K does not satisfy the subordinate clause (exactly
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5 others are K-tall is false).11 So the reference to the upper interval I will
also be required to be the largest interval consisting entirely of I′ which
satisfy the requirements imposed by the subordinate clause and the
differential:

(86) Mn(µI′[Sub(µK′[DIFF(I′ – K′)])])

Formula (86) requires that the main clause of the comparative be satis-
fied by the largest interval each non-empty part of which has the following
property: the maximal interval consisting only of intervals separated from
it by the differential verifies the subordinate clause. The following figure
captures a moment in the verification of the sentence H is taller than at
least five of the others were:

(87)

Three subintervals of I have been checked. In each case, the interval below
it (indicated with a parabola) covers at least 5 individuals other than H.
Since I covers H, the sentence is true. The process will continue covering
the entire span from above R and S to the top of the scale, if there is one.
From the formula in (86) and the figure in (87), it develops that an
expression of the form “differential more than S” defines an interval. In
(87), the interval I is the denotation of “some+er+than+at least 5 of the

26 ROGER SCHWARZSCHILD AND KARINA WILKINSON

11 As an exercise the reader can also verify that although H is no taller than Q is is false
for (80), the condition in (82) would be met for this case. (Hint: Let Z be the main clause
interval.)



others were t-tall”. This view of things is syntactically transparent in
examples like the following: 

(88) The boy is sick, much more than his father is.

(89) The boy is sick, somewhat more than his sister is.

(90) The boy is sick, (but) little more than his friend is.

Sentence (88), for example, asserts that the boy is I-sick, where I is the
interval given by the comparative much more than his father is (sick).

This brings us to the question of how the semantics we have proposed
constrains syntactic analyses of the comparative. The answer is that it will
depend very much on assumptions above how meanings are computed.
We should therefore just say what the system needs to achieve. For (88),
it seems reasonable to think of more as denoting a function which takes
two arguments. One argument is provided by the than-clause and it
corresponds to Sub in (86). The second argument is provided by the dif-
ferential much. The function applies to these arguments to give an interval.
That is the interval described in (86) as µI′[Sub(µK′[DIFF(I′ – K′)]. That
interval serves as an argument for the function denoted by sick resulting
in a one-place predicate over individuals, which applies to the boy. Unlike
in (88)–(90), in run-of-the-mill comparatives of the form John is much taller
than George is the interval-denoting expression appears to be wrapped
around the scalar predicate. In order to “set things right” we have the
usual choices. Either the syntax-semantics map involves more than just
sisterhood interpreted as function-argument application or the meanings
of the parts involve more than the functions and arguments just described,
or most likely a combination of these last possibilities. Furthermore,
although the semantic proposal made here was developed on the assump-
tion that the subordinate clause contains an interval-type trace, this is not
necessary. In particular, we are not committed to an ellipsis analysis of
the missing material in the than-clause as opposed to an analysis in which
the missing material is the type of a one-place predicate (see Kennedy 1997,
1999; Klein 1980).

According to the Persistence Principle ((62) in the previous section),
an individual is covered by multiple ever-larger intervals of the scale.
Since the comparative names an interval, this translates into the claim that
multiple comparatives (based on the same adjective) will be true of a
single individual. To illustrate this, we compute a collection of compara-
tives in the figure below. The interval pictured corresponds to the
comparative expression below the scale; assume in each case that the letters
correspond to the relevant boys quantified over in the example and that if
a letter is used in two figures it represents the same boy: 
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Given that the interval in Figure 1 is a subinterval of the one in Figure 2,
if the interval in Figure 1 covers Maxine, the one in Figure 2 will as well.
This corresponds to the intuition that if Maxine is taller than exactly two
of the boys then she is taller than one of the boys, an example of the upward
entailing character of the comparative noted in section 2. The interval in
Figure 3 is discontinuous. Assuming that a discontinuous interval can have
a continuous one as a part, the Persistence Principle entails that scalar
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(91)

Figure 1. (Tall)er than
exactly two of the boys
are.

Figure 2. (Tall)er than
one of the boys is.

Figure 4. No (tall)er
than e is.

Figure 5. (Tall)er than
all of the boys are.

Figure 3. Two indices
(tall)er than one of the
boys is.



predicates will relate individuals to discontinuous intervals. Maxine is
related to such an interval on the height scale in Figure 3, if she is two
inches taller than one of the boys.12 The interval in Figure 3 is not a
subinterval of the one in Figure 4 but they do overlap. This means that if
Maxine is two inches taller than one of the boys is and e is one of the
boys, it is possible but not necessary that Maxine is no taller than e is.

We have made some use here of the zero interval. One might wonder
then whether a comparative can even denote the zero. Such a compara-
tive in conjunction with a degree adjective would yield a predicate that
would be false of every individual in the domain of the adjective, assuming
that no individual in the domain of a degree predicate is covered by the zero
interval. Exactly this circumstance arises in the following example supplied
by Maribel Romero.13 Consider a scenario in which Tom, Uwe, and Victor
are the same height and are the shortest people in question and where
other than those three, Rhoda and Selma are the shortest and they are the
same height. Such a scenario is depicted in the chart in (85). In that situ-
ation there is no-one who is taller than exactly 4 other people. To see
how this works, consider the following expression: 

(92) Exactly 4 people are µK′[SOME(I′ – K′)]-tall.

There are no I′ that make this true. If we pick an I′ above Rhoda, for
example, µK′[SOME(I′ – K′)] will give an interval that covers 5 people.
If we have an interval at or below Rhoda, µK′[SOME(I′ – K′)] is an interval
that covers exactly 3 people. Since (92) is not true then for any I′, it
follows that 0 is an interval all of whose non-empty parts satisfy (92),
vacuously, and 0 is the largest such interval (since it is the only such
interval). Hence

(93) µI′[exactly 4 people are µK′[SOME(I′ – K′)]-tall] = 0

Expression (93) gives the meaning for -er than exactly 4 people are tall
and combines with tall to give a predicate true of no-one.
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This concludes the development of an interval-based semantics for
comparatives. While points on a scale may do the job where comparison
between individuals is concerned (and one should in principle prove that
the present account reduces to a point account in such cases), a study of
the full range of cases shows that they are not at the heart of scalar pred-
ication.

8 .   E Q U AT I V E S A N D N U M E R A L S

It is commonplace to treat equatives alongside comparatives. The purpose
of this section is to sketch an analysis of the equative and of numerals
that does justice to similarities as well as differences with the compara-
tive.

The semantics of comparatives proposed here relies crucially on the
meaning of the particular differential that has been chosen. Equatives,
though syntactically similar to comparatives in English, do not allow for
differentials. 

(94)   # He is 2 inches as short as his brother was.

(95)   # He isn’t that much as short as his brother was.

Moreover, as Klein (1991, pp. 676–677) points out, crosslinguistically these
two constructions are fairly sharply distinguished. Besides syntactic dis-
tinctions in various languages, Klein, citing Ultan (1972), notes that
comparative and superlative markers are similar to each other and gener-
ally dissimilar to equative markers. Suppletive paradigms join comparatives
with superlatives distinguishing both from the equative and the positive:
better ~ best versus good ~ as good. It is plausible then that the correct
analysis of equatives would not parallel that of the comparative too closely.

Equatives are context dependent. Consider (96): 

(96) Alice is as rich as her mother was.

Alice’s wealth could be close enough to her mother’s so that (96) would
count as true if wealth is measured in dollars but not once we start counting
pennies. (96) equates an interval that marks Alice’s wealth with one marking
her mother’s wealth, taking into consideration the level of detail in the
conversation. Using the concept of a ruler as our guide, we associate with
a context a partition of the scale into equal-sized, contiguous intervals.
We will call these intervals “unit intervals.” Alice is as rich as her mother
is if her unit interval of richness is equivalent to her mother’s. Moving
from a fine-grained context to a rougher-grained one increases the size of
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the unit interval and the truth of an equative is preserved.14 Moving in the
opposite direction, however, may lead to reversal of the truth of an equative,
as we saw with Alice when we started counting pennies. The general idea
is stated in (97): 

(97) For any given context, the equative is true if the unit interval
satisfying the subordinate clause also satisfies the main clause,
where the context determines what counts as a unit interval.

According to (97), if an equative is true, there must be a contextually
specified unit interval which satisfies the subordinate clause. Our experi-
ence with degree analyses of comparatives tells us we had better check what
happens when quantifiers are involved, as in the following examples:

(98) Alice is as rich as everybody else is.

(99) The subject shouted “bird” as quickly as he shouted only one
other word.

(100) Seymour was as smart as one of the girls was.

The analysis we have given so far predicts that (98) is true just in case
we are in a context where everybody has the same unit interval of wealth:
otherwise no unit interval will satisfy the embedded clause. This predic-
tion is correct on the ‘exactly’ reading, but not on the ‘at least’ reading
(Seuren 1984; Rullmann 1995). This difference is spelled out as follows:

(101) Alice is exactly as rich as everybody else is.

(102) Alice is at least as rich as everybody else is. 

Only (101) intuitively entails that for all intents and purposes, everybody
has the same unit interval of wealth. (102) does not carry this entailment.
It could be true in a context where wealth is measured in the number of
watermelons a person has and where no two people have the same number
of watermelons. It is sufficient that Alice has more than any of the others.
One might try to argue that (101) is, in fact, the only reading we get for
(98). But even in that case, we still need an analysis of (102) that doesn’t
commit us to a unique unit interval that everybody shares. Another problem
with our initial proposal in (97) is that it makes reference to the unit interval
satisfying the subordinate clause. But (99) could be true even if there are
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many speeds s such that the subject shouted only one word at speed s.
And (100) could be true even if there are many IQ’s, such that one of the
girls is that smart. The unit interval idea might be on the right track, but
the implementation in (97) needs immediate revision.

The use of the modifiers “exactly” and “at least” is reminiscent of dis-
cussion of numeral modifiers. There too we find that bare numerals can
have readings spelled out with these modifiers. The chart below shows
various contexts where these different readings arise both for numerals
and for equatives:

Modifier Numeral Equative

Exactly (How many children does John (How tall is Bill?) He is as tall as
have?) He has three children. Peter.

At least You must have $4 to enter. You must be as strong as Bill to be 
accepted.

He ate four cookies, if not more. He went as far as Billy went, if not 
further.

At most You can eat four cookies (but You can go as far as Billy went 
no more). (but not further).

The parallel with numerals suggests a line of analysis that follows the
treatment of numerals in Kadmon (1987). Like Kadmon, we want a
semantics for the simple equative that can be modified by ‘exactly’ or ‘at
least’ and we ultimately need a pragmatic account of how the meanings
of these modifiers show up in the bare case. To pursue this line, we should
first get straight what the readings are for the modified cases and then go
about deciding whether we can successfully extract the modifiers to get a
reasonable story for the bare case. Keeping in mind the trouble we had above
by assuming uniqueness, we start with the following basic intuition, ignoring
‘at most’ for the moment:

(103) Alice is exactly as rich as Bill is.

IS TRUE IF there is some wealth interval that covers
Bill that also covers Alice and that interval
is a contextually specified unit interval.

Alice is at least as rich as Bill is.

IS TRUE IF there is some wealth interval IBill that covers
Bill and there is some wealth interval IAlice

that covers Alice, and
(i) the intersection of IBill and IAlice is a

contextually specified unit interval
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(ii) every part of IBill is at or below IAlice

(∃K[K � IBill → K – IAlice = 0]) 
(it follows that ‘exactly’ entails ‘at least’
but not vice versa).

The truth conditions for the equative that are reflected in the intuitions on
the right in (103) now make correct predictions for the cases considered.
(101) but not (102) requires a unit interval that covers everybody, meaning
that in the relevant context everybody has the same unit interval of wealth.
And since we have existential truth conditions, (99) and (100) no longer
break down for lack of uniqueness. On the ‘exactly’ reading of (99) for
example, we require some unit interval of speed with which the subject
shouted “bird” and with which he shouted one other word. This allows
that he shouted many words, with different unit intervals of alacrity.

Next, we attempt to extract the modifiers from the equatives. In the
following sketch we make similar assumptions (or non-assumptions) about
the syntax-semantics of equatives that we made with comparatives (E.g.
“subordinate clause” means the clause under as and the equative is inter-
preted without the higher adjective; though see the brief remarks at the
end of section 7.). The interpretation of the bare equative is as follows:

(104) As-as-S denotes the following set of intervals:
{I: ∃J, J satisfies S, the intersection of J and I is a contextually
specified unit interval and it includes a bound for I}

Now we outline the action of the relevant modifiers when they apply to
an expression denoting a set of intervals like the one defined in (104):

(105) Exactly: limits the set to contextually specified unit intervals.

(106) At least: limits the set to intervals which include the top of the
scale if there is one, or else have no upper bound.

(l07) At most: limits the set to intervals which include the bottom of
the scale if there is one, or else have no lower bound.

The figures in (108) below illustrate how things are meant to work:
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The unit intervals are indicated in the middle in Figure 8. In Figures 6, 7,
and 9, we have indicated an interval in the set denoted by the expressions
in italics below. Note that since the subordinate clause contains no quan-
tifiers, there is just one such interval in each case. Finally, the interval in
Figure 10 does not fit the specifications. Call the interval depicted in
Figure 10, I. There is no interval J such that I ∩ J is a contextually spec-
ified degree AND I ∩ J contains a bound for I. To make things right, the
interval must extend down to include f. This corresponds to the fact that
in this context, anyone who is at least as tall as k is at least as tall as f
and vice versa.

We now assume that the grammar conspires to make it true that x is
Ω-tall, where Ω denotes a set intervals, just in case there is an I in Ω
and x is I-tall. In other words, we need to assume that somehow an
existential comes in from the outside, applying to all equatives after
modification. Kadmon faced a similar challenge in her account of the
numerals, but in her case she needed no explanation because she worked
in a DRT framework where the idea of external existential quantification
is central.

It should be noted that the bare equative is analyzed here in such a way
that it says next to nothing. To be as tall as Jane, for example, is just to
be covered by some interval on the height scale that has a unit interval
overlapping with an interval covering Jane. This would be true for any
heighted person. This is pretty much the right outcome, if we truly believe
that the bare equative is somehow vague or ambiguous between an ‘at least’,
an ‘exactly’, and an ‘at most’ reading. As on Kadmon’s account, we should
like eventually to have a pragmatic story explaining how we routinely rescue
this violation of the Maxim of Quantity.

While paralleling an account of numerals, the story told here is about
scalar intervals. As such it still looks quite different from accounts of
numerals, unless we adopt a view like that of Nerbonne (1995) where
numerals are understood as relating to points on a scale. The intuition
very roughly would be that a predicate like ‘4 boys’ would be true of x if
x is an object that is at the “4-portion” of the boy scale. We might modify
things in such a way that 4 denotes a set of intervals around a certain
point with the modifiers working roughly as defined in (105)–(107).

Hopefully, this sketch makes plain how equatives are like comparatives
and how they differ. The differences can be appreciated by considering
the two sentences below, which are truth-conditionally equivalent; however,
if we are right, the procedure for arriving at those truth conditions is very
different:
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(109) Quentin is no taller than Hank is.

(110) Hank is at least as tall as Quentin is.

9 .   O T H E R D E G R E E C O N S T R U C T I O N S

It is to be expected that quantifiers in the scopes of other kinds of degree
expressions will lead to issues similar to the ones addressed here. We have
in mind examples such as the following:

(111) Frawley is too far from most of the hospitals to qualify.

(112) John treated most of the children fairly enough to make us
believe he had a good heart.

(113) The closest station to almost all of the units is Starfish I.

(114) How old are most of the members?

For (111) it will not do to talk about a point on the distance scale which
corresponds to how far Frawley is from most of the hospitals, since there
may not be such a point. One might suppose that this problem can be solved
by removing the quantifier from the scope of too. But imagine that in
order to qualify, Frawley has to be within one mile of at least 3 hospitals.
Suppose there are 10 hospitals and Frawley is within a mile of just one
of them. In that case, (111) is clearly true, as compared with (115):

(115) [For most of the hospitals m] Frawley is too far from m to
qualify.

For any given hospital, it is neither the case that if Frawley qualified it would
be closer to that hospital nor that if Frawley was closer to that hospital it
would qualify. Similar reasoning applies in (112). (See Meier, to appear,
for analysis of too/enough.)

As for (114), if the group in question includes mostly individuals in
the 20–30 age range with a few exceptional 50-year-olds, the answer to
the question is “between 20 and 30.” We seem to be looking for the smallest
interval that is included in every other interval I that satisfies the state-
ment ‘Most members are I-old’. In some cases, there will not be such an
interval and (114) becomes infelicitous.

10 .   P O S I T I V E S (A D J E C T I V E S W I T H N O D E G R E E M O D I F I C AT I O N )

In the sentence The monkey is fat, the degree argument of fat is left free.
The standard view is that in some not yet fully understood manner, the
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context determines a value for the implicit degree argument. In accounts
that deal in points on the scale this is not enough. For it is possible in
one and the same context to say Monkey A is fat and Monkey B is fat and
Monkey A is fatter than monkey B. Spelling these assertions out in point
terms makes the difficulty clear:

(116) Monkey A is d1-fat.

(117) Monkey B is d2-fat.

(118) ∃d1∃d2 monkey A is d1-fat and monkey B is d2-fat and d1 > d2.

Assuming that the context supplies a salient point on the obesity scale,
(116)–(118) should be impossible. By (118) d1 and d2 are different, but if
they are both the contextually supplied point, they must be identical. The
solution that is normally proposed (at least as early as Cresswell 1976) is
that not only does the context supply a value for the free degree variable,
but the meaning of the adjective in The monkey is fat is more than what
you find in the comparative. In these cases, the adjective undergoes a
meaning change by which it takes on a comparative sense, something
along the lines of ‘more Adj than X’ where X is supplied by context. As
Klein (1980) has pointed out, this is somewhat surprising, given that it is
rare or impossible to find a language where the relevant operation is
morphologically realized. This operation becomes unnecessary once we
include intervals of the scale as possible values for free degree arguments,
given that two individuals can be of different weights but associated with
some of the same intervals on the weight scale.

11 .   C O N N E C T E D N E S S

It is a common assumption (Klein 1982; van Benthem 1983; Sánchez-
Valencia 1994) that the relation given by a compared adjective is connected:
for any adjective and entities x,y in the domain of the adjective, either x
is more Adj than y or y is more Adj than x or they are equally Adj.
Intuitively, unless John and Mary are the same height, either John is taller
than Mary or Mary is taller than John. It is clear how connectedness comes
about in a system where scalar predicates like tall relate individuals to
unique points on the scale and where the points themselves are connected.
But once we move to a system in which individuals are related to inter-
vals on the scale, the picture changes. The greater-than relation on intervals
is not connected. If one interval overlaps another, they are neither iden-
tical nor is one higher than the other. This suggests that one should encounter
situations in which a scalar predicate does not induce a connected relation
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among individuals in its domain. Such cases exist. Imagine a scarf that
ranges in color from white to grayish white. Take a patch of pure white
cloth, and a patch of the grayish white. Both (119) and (120) hold true.

(119) The first patch is whiter than the second.

(120) That fresh snow over there is whiter than the whole scarf is.

Taken together, (119)–(120) entail that the scarf and the two patches are
associated with intervals on the whiteness scale. Nevertheless, we cannot
say that the first patch is whiter than the whole scarf is, nor that the whole
scarf is whiter than the first patch. In effect, the smallest intervals of the
whiteness scale associated with the scarf include the smallest ones associ-
ated with the first patch. Here’s another example from a different domain.
The temperature in the living room varies across the parts of the room
from 60° to 70°. The living room is warmer than the inside of the refrig-
erator and the cup of lukewarm water (69°) is warmer than the inside of
the refrigerator, but the living room is not warmer than the cup of water,
nor is the reverse true. Moving to yet another domain, even though one talks
about how far Los Angeles is from New York City or from New York
State, one cannot answer which of the two is closer to Los Angeles.

This type of disconnectedness is familiar from the temporal domain. If
one’s gaze is limited to moment-sized events one finds temporal connect-
edness. However, once one includes intervals, connectedness is not predicted
nor is it found. If the interval at which the house was built includes the
interval at which the President was elected, then the election occurred neither
before nor after the house building. In effect, we are drawing a parallel
between accomplishments which are essentially interval-sized events and
other entities, like the scarf, which relate to intervals but not points on a
scale.

This type of parallelism suggests other possible connections between
these various scalar domains. We will briefly mention two such connections
drawing on Bennett and Partee (1972), a paper devoted to establishing the
need for an interval-based tense semantics. Bennett and Partee discuss the
verbs begin and finish, which serve to locate an event e in terms of a
temporal relation that e bears to a large (potential) event E. In the case of
begin, e occurs in the initial part of the interval in which E occurs. In the
case of finish, e occurs in the final part of the interval in which E occurs.
A parallel diagnosis seems plausible for the superlative. Suppose I is the
smallest interval on the fluffiness scale that covers the ducks. Then the
fluffiest ducks are covered by a final subinterval of I and the least fluffy
ducks are covered by an initial subinterval of I.
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Another parallel comes from Bennett and Partee’s discussion of resume.
In the figures in (91), at the end of section 7, we made use of discontin-
uous (i.e., non-convex) intervals. One might suppose that in tense semantics
we only encounter convex intervals, so that this would be where tense
and scalar semantics part ways. This suspicion is dispelled by Bennett and
Partee’s (1972) discussion of the semantics of resume. John resumes building
a house is true at I1 just in case John build a house is true at (I0 ∪ I1) for
some I0 strictly before I1. This allows a significant gap between I0 and I1.
A relevant intuition is that the same house has to be under construction at
I0 as at I1, hence the need to refer to a non-convex interval.

12 .   C O N C L U S I O N

Scalar predicates relate individuals to parts of a scale. The discovery that
it is intervals which form the basis for this relation paves the way for under-
standing this as a relation that is monotonic with respect to the part-of
ordering. Monotonicity is key in the analysis of expressions in which indi-
vidual quantifiers and scalar predicates are mixed. Once this much is in
place, we gain a new perspective on other aspects of scalar predication
and a bridge is thrown up between the semantics of tense and the seman-
tics of scalar predicates.
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